दो धन-आयनों के बीच की दूरी $d$ है और प्रत्येक पर $q$ आवेश है। यदि इन दो आयनो के बीच का प्रत्याकर्षण बल $F$ हो तो, प्रत्येक आयन में से कितने इलेक्ट्रॉन लुप्त (अविद्यमान) हैं। $(e$ -एक इलेक्ट्रॉन का आवेश है )
$\frac{{4\pi {\varepsilon _0}F{d^2}}}{{{e^2}}}$
$\sqrt {\;\frac{{4\pi {\varepsilon _0}F{e^2}}}{{{d^2}}}} $
$\sqrt {\;\frac{{4\pi {\varepsilon _0}F{d^2}}}{{{e^2}}}} $
$\;\frac{{4\pi {\varepsilon _0}F{d^2}}}{{{q^2}}}$
सरकंडे ( पिथ) की दो बॉलों (गोलियों) पर समान (बराबर) आवेश है। इन्हें समान लम्बाई की डोरियों (धागे) से एक बिन्दु से लटकाया गया है। संतुलन की अवस्था में इनके बीच की दूसरी $r$ है। दोनों डोरियों को उनकी आधी लम्बाई पर कस कर बाँध दिया जाता है। अब संतुलन की स्थिति में दोनों बॉलों के बीच की दूरी होगा: $V$
दो स्थिर इलेक्ट्रॉनों, जिनके बीच की दूरी $'2d'$ है, के बीच इन्हें मिलाने वाली रेखा के मध्यबिन्दु पर तीसरा आवेश प्रोटॉन रखा है। इस प्रोटॉन को किसी लघु दूरी $x ( x < d )$ तक दोनों इलेक्ट्रॉनों को मिलाने वाली रेखा के लम्बवत् विस्थापित किया गया है। इसके कारण यह प्रोटॉन सरल आवर्त गति करने लगता है, जिसकी कोणीय आवत्ति होती है: $( m =$ आवेशित कण की संहति $)$
$10^{-4}$ मी. $^2$ अनुप्रस्थ परिच्छेद क्षेत्रफल वाले एक धातु के पतले तार का प्रयोग करके $30$ सेमी. त्रिज्या का एक छल्ला (रिंग) बनाया गया है। $2 \pi \mathrm{C}$ के एक धन आवेश को छल्ले पर एक समान रूप से वितरित किया गया है तथा $30 \mathrm{pC}$ का दूसरा धन आवेश छल्ले के केन्द्र पर रखा गया है। छल्ले में तनाव . . . . . . .${N}$ है जबकि छल्ले का आकार अपरिवर्तित रहता है।
(गुरूत्व का प्रभाव नगण्य मान कर)
(यदि, $\frac{1}{4 \pi \epsilon_0}=9 \times 10^9 \mathrm{SI}$ मात्रक)
$5 \times {10^{ - 11}}\,C$ एवं $ - 2.7 \times {10^{ - 11}}\,C$ के दो आवेश एक दूसरे से $0.2$ मीटर की दूरी पर स्थित हैं। इन दोनों को जोड़ने वाली रेखा पर एक तीसरा आवेश $ - 2.7 \times {10^{ - 11}}\,C$ से कितनी ......मीटर दूरी पर रखा जाये कि उस पर कार्यरत कुल बल शून्य हो
दो समान आवेश $Q$ परस्पर कुछ दूरी पर रखे हैं इनको मिलाने वाली रेखा के केन्द्र पर $q$ आवेश रखा गया है। तीनों आवेशों का निकाय सन्तुलन में होगा यदि $q$ का मान हो