Two point charges $A$ and $B$, having charges $+Q$ and $- Q$ respectively, are placed at certain distance apart and force acting between them is $\mathrm{F}$. If $25 \%$ charge of $A$ is transferred to $B$, then force between the charges becomes
$F$
$\frac{9 \mathrm{F}}{16}$
$\frac{16 \mathrm{F}}{9}$
$\frac{4 \mathrm{F}}{3}$
Suppose the charge of a proton and an electron differ slightly. One of them is $-e,$ the other is $(e + \Delta e).$ If the net of electrostatic force and gravitational force between two hydrogen atoms placed at a distanced (much greater than atomic size) apart is zero, then $\Delta e$ is of the order of $[$ Given: mass of hydrogen $m_h = 1.67 \times 10^{- 27}\,\, kg]$
$(a)$ Two insulated charged copper spheres $A$ and $B$ have their centres separated by a distance of $50 \;cm$. What is the mutual force of electrostatic repulsion if the charge on each is $6.5 \times 10^{-7}\; C?$ The radii of $A$ and $B$ are negligible compared to the distance of separation.
$(b)$ What is the force of repulsion if each sphere is charged double the above amount, and the distance between them is halved?
By using Coulomb’s law, define unit charge.
A thin metallic wire having cross sectional area of $10^{-4} \mathrm{~m}^2$ is used to make a ring of radius $30 \mathrm{~cm}$. A positive charge of $2 \pi \mathrm{C}$ is uniformly distributed over the ring, while another positive charge of $30$ $\mathrm{pC}$ is kept at the centre of the ring. The tension in the ring is__________ $\mathrm{N}$; provided that the ring does not get deformed (neglect the influence of gravity). (given, $\frac{1}{4 \pi \epsilon_0}=9 \times 10^9 \mathrm{SI}$ units)
A charge of $Q$ coulomb is placed on a solid piece of metal of irregular shape. The charge will distribute itself