A charge of $Q$ coulomb is placed on a solid piece of metal of irregular shape. The charge will distribute itself
Uniformly in the metal object
Uniformly on the surface of the object
Such that the potential energy of the system is minimised
Such that the total heat loss is minimised
Similar charges are placed at corners of a square and a charge $q_0$ is placed at it's centre find net force on it
Two identical conducting spheres, having charges of opposite sign, attract each other with a force of $0.108$ $N$ when separated by $0.5$ $m$. The spheres are connected by a conducting wire, which is then removed, and thereafter, they repel each other with a force of $ 0.036$ $N$. The initial charges on the spheres are
Two similar spheres having $ + \,q$ and $ - \,q$ charge are kept at a certain distance. $F$ force acts between the two. If in the middle of two spheres, another similar sphere having $ + \,q$ charge is kept, then it experience a force in magnitude and direction as
A total charge $Q$ is broken in two parts ${Q_1}$ and ${Q_2}$ and they are placed at a distance $R$ from each other. The maximum force of repulsion between them will occur, when
Equal charges $q$ are placed at the four corners $A,\,B,\,C,\,D$ of a square of length $a$. The magnitude of the force on the charge at $B$ will be