दो समान्तर प्लेटों के विभव क्रमश: $-10\,V$ एवं $+30\,V$ हैं। यदि प्लेटों के बीच की दूरी $2\,cm$ हो। तो प्लेटों के मध्य विद्युत क्षेत्र .......$V/m$ होगा
$2000$
$1000$
$500$
$3000$
किसी बिन्दु $( x , y , z )$ (मीटर में) पर विधुत विभव, $V =4 x ^{2}$ वोल्ट है। बिन्दु (1,0,2) पर विधुत क्षेत्र वोल्ट प्रति मी. में होगा:
बिन्दु $( x , y , z )$ पर वैधुत विभव $: V =- x ^{2} y - xz ^{3}+4$ है। इस बिन्दु पर वैधुत क्षेत्र $\overrightarrow{ E }$ होगा:-
मुक्त आकाश में एक बिन्दु पर आवेश $Q$ कूलाम्ब के कारण विभव $Q \times 10^{11}$ वोल्ट है। इस बिन्दु पर विधुतीय क्षेत्र होगा-
$0.01 m$ की दूरी द्वारा पृथक्कृत दो बड़ी वृत्तीय चकतियों को चित्र में दर्शाए अनुसार एक स्विच द्वारा एक बैटरी से संयोजित किया जाता है। घनत्व $900 kg m ^{-3}$ की आवेशित तेल की बूँदों को शीर्ष चकती के केन्द्र पर एक महिन छिद्र से छोड़ा जाता है। जब कुछ तेल की बूँदें टर्मिनल वेग प्राप्त करती है, तब चकतियों के सिरों पर $200 V$ की वोल्टता आरोपित करके स्विच को बन्द किया जाता है। जिसके परिणामस्वरूप, त्रिज्या $8 \times 10^{-7} m$ की तेल की एक बूँद ऊर्ध्वाधर रूप से गति करना बन्द कर देती है तथा चकतियों के मध्य तैरती है। इस तेल की बूँद में उपस्थित इलेक्ट्रॉनों की संख्या. . . . . . है। (उत्प्लावन बल को नगण्य माने, गुरूत्वीय त्वरण $=10 ms ^{-2}$ तथा इलेक्ट्रॉन ($e$) पर आवेश $=1.6 \times 10^{-19} C$ लें)
एक आवेश-वितरण के द्वारा निम्नलिखित विभव (वोल्ट में) उत्पत्र होता है :
$V (z)=30-5 z^{2},|z| \leqslant 1 m$ में
$V (z)=35-10|z|,|z| \geqslant 1 m$ में
$V (z), x$ एवं $y$ पर निर्भर नहीं करता। यदि यह विभव एक नियत आवेश जो प्रति इकाई आयतन $\rho_{0}\left(\varepsilon_{0}\right.$ इकाइयों में) है तथा एक दिये हुए क्षेत्र में फैला हुआ है, से उत्पादित है, तब निम्नलिखित में से सही विकल्प का चयन करें