Two long straight wires are placed along $x$-axis and $y$-axis. They carry current $I_1$ and $I_2$ respectively. The equation of locus of zero magnetic induction in the magnetic field produced by them is
$y=x$
$y=\left(\frac{I_2}{I_1}\right) x$
$y=\left(\frac{I_1}{I_2}\right) x$
$y=\left(I_1 I_2\right) x$
The earth’s magnetic field at a given point is $0.5 \times {10^{ - 5}}\,Wb{\rm{ - }}{m^{ - 2}}$. This field is to be annulled by magnetic induction at the center of a circular conducting loop of radius $5.0\,cm$. The current required to be flown in the loop is nearly......$A$
Magnetic field vector component because of ...... and electric field scalar component because of ......
An electron is revolving round a proton, producing a magnetic field of $16\, weber/m^2$ in a circular orbit of radius $1\,\mathop A\limits^o $. It’s angular velocity will be
Find the magnetic field at $P$ due to the arrangement shown
Two similar coils are kept mutually perpendicular such that their centres coincide. At the centre, find the ratio of the magnetic field due to one coil and the resultant magnetic field by both coils, if the same current is flown