Magnetic field vector component because of ...... and electric field scalar component because of ......
A current of $0.1\, A$ circulates around a coil of $100$ $turns$ and having a radius equal to $5\,cm$. The magnetic field set up at the centre of the coil is ($\mu_0 = 4\pi \times 10^{-7} weber/amp-metre$)
A coil carrying a heavy current and having large number of turns mounted in a $N-S$ vertical plane and $a$ current flows in clockwise direction. A small magnetic needle at its cente will have its north pole in
Figure shows the cross-sectional view of the hollow cylindrical conductor with inner radius '$R$' and outer radius '$2R$', cylinder carrying uniformly distributed current along it's axis. The magnetic induction at point '$P$' at a distance $\frac{{3R}}{2}$ from the axis of the cylinder will be
In the above figure magnetic field at point $C$ will be
Magnetic field intensity at the centre of coil of $50$ $turns$, radius $0.5\, m$ and carrying a current of $2\, A$ is