Two integers $\mathrm{x}$ and $\mathrm{y}$ are chosen with replacement from the set $\{0,1,2,3, \ldots ., 10\}$. Then the probability that $|x-y|>5$ is:
$\frac{30}{121}$
$\frac{62}{121}$
$\frac{60}{121}$
$\frac{31}{121}$
Two dice are thrown. The events $A, B$ and $C$ are as follows:
$A:$ getting an even number on the first die.
$B:$ getting an odd number on the first die.
$C:$ getting the sum of the numbers on the dice $\leq 5$
Describe the events $B$ and $C$
Two dice are thrown. The events $A,\, B$ and $C$ are as follows:
$A:$ getting an even number on the first die.
$B:$ getting an odd number on the first die.
$C:$ getting the sum of the numbers on the dice $\leq 5$
State true or false $:$ (give reason for your answer)
Statement : $A$ and $B$ are mutually exclusive and exhaustive
Let $E _{1}, E _{2}, E _{3}$ be three mutually exclusive events such that $P \left( E _{1}\right)=\frac{2+3 p }{6}, P \left( E _{2}\right)=\frac{2- p }{8}$ and $P \left( E _{3}\right)$ $=\frac{1- p }{2}$. If the maximum and minimum values of $p$ are $p _{1}$ and $p _{2}$, then $\left( p _{1}+ p _{2}\right)$ is equal to.
For the two events $A$ and $B$, $P(A) = 0.38,\,$ $P(B) = 0.41,$ then the value of $P(A$ not) is
Three coins are tossed. Describe Two events, which are not mutually exclusive.