Two infinite planes each with uniform surface charge density $+\sigma$ are kept in such a way that the angle between them is $30^{\circ} .$ The electric field in the region shown between them is given by
$\frac{\sigma}{\varepsilon_{0}}\left[\left(1+\frac{\sqrt{3}}{2}\right) \hat{\mathrm{y}}+\frac{\hat{\mathrm{x}}}{2}\right]$
$\frac{\sigma}{2 \varepsilon_{0}}\left[\left(1-\frac{\sqrt{3}}{2}\right) \hat{\mathrm{y}}-\frac{\hat{\mathrm{x}}}{2}\right]$
$\frac{\sigma}{2 \varepsilon_{0}}\left[(1+\sqrt{3}) \hat{\mathrm{y}}+\frac{\hat{\mathrm{x}}}{2}\right]$
$\frac{\sigma}{2 \varepsilon_{0}}\left[(1+\sqrt{3}) \hat{\mathrm{y}}-\frac{\hat{\mathrm{x}}}{2}\right]$
Obtain the expression of electric field by ......
$(i)$ infinite size and with uniform charge distribution.
$(ii)$ thin spherical shell with uniform charge distribution at a point outside it.
$(iii)$ thin spherical shell with uniform charge distribution at a point inside it.
Two infinitely long parallel wires having linear charge densities ${\lambda _1}$ and ${\lambda _2}$ respectively are placed at a distance of $R$ metres. The force per unit length on either wire will be $\left( {K = \frac{1}{{4\pi {\varepsilon _0}}}} \right)$
An infinite plane sheet of charge having uniform surface charge density $+\sigma_5 \mathrm{C} / \mathrm{m}^2$ is placed on $\mathrm{x}-\mathrm{y}$ plane. Another infinitely long line charge having uniform linear charge density $+\lambda_e \mathrm{C} / \mathrm{m}$ is placed at $z=4 \mathrm{~m}$ plane and parallel to $y$-axis. If the magnitude values $\left|\sigma_s\right|=2\left|\lambda_{\mathrm{e}}\right|$ then at point $(0,0,2)$, the ratio of magnitudes of electric field values due to sheet charge to that of line charge is $\pi \sqrt{\mathrm{n}}: 1$. The value of $n$ is
Consider a sphere of radius $R$ with charge density distributed as :
$\rho(r) =k r$, $r \leq R $
$=0$ for $r> R$.
$(a)$ Find the electric field at all points $r$.
$(b)$ Suppose the total charge on the sphere is $2e$ where e is the electron charge. Where can two protons be embedded such that the force on each of them is zero. Assume that the introduction of the proton does not alter the negative charge distribution.
Let $E_1(r), E_2(r)$ and $E_3(r)$ be the respective electric fields at a distance $r$ from a point charge $Q$, an infinitely long wire with constant linear charge density $\lambda$, and an infinite plane with uniform surface charge density $\sigma$. if $E_1\left(r_0\right)=E_2\left(r_0\right)=E_3\left(r_0\right)$ at a given distance $r_0$, then