दो समान पतले वलय, जिनमें से प्रत्येक की त्रिज्या $R$ मीटर है, एक-दूसरे से $R$ मीटर की दूरी पर समाक्षत: रख दिए जाते हैं। यदि $Q_1$ कूलॉम और $Q_2$ कूलॉम आवेश उन वलयों पर समान रूप से फैला दिए जाते हें तो एक आवेश $q$ को एक वलय के केन्द्र से दूसरे वलय के केन्द्र तक ले जाने में किया गया कार्य होगा
शून्य
$\frac{{q({Q_1} - {Q_2})(\sqrt 2 - 1)}}{{\sqrt 2 .4\pi {\varepsilon _0}R}}$
$\frac{{q\sqrt 2 ({Q_1} + {Q_2})}}{{4\pi {\varepsilon _0}R}}$
$\frac{{q({Q_1} + {Q_2})(\sqrt 2 + 1)}}{{\sqrt 2 .4\pi {\varepsilon _0}R}}$
धातु के एक गोले पर आवेश $10\,\mu C$ है। एक एकांक ऋणात्मक आवेश को गोला $A$ से $B$ तक लाया जाता है जो धातु के गोले से दोनों ओर $100$ सेमी दूर है। परन्तु $A$ गोले के पूर्व में तथा $B$ गोले के पश्चिम में है। इस क्रिया में किया गया कार्य ........$joule$ होगा
प्रोटॉन इलेक्ट्रॉन से लगभग $1840$ गुना भारी है। जब इसे $1\, kV$ विभवान्तर से त्वरित किया जाता है तो इसकी गतिज ऊर्जा .......$keV$ होगी
इस प्रश्न में दो कथन हैं, कथन$-1$ तथा कथन$-2$। इन कथनों के बाद दिये गये चार विकल्पों में से उस विकल्प का चयन कीजिए जो इन प्रकथनों का सर्वोत्तम वर्णन करता है।
कथन$-1 :$ बिन्दु $P$ से, बिन्दु $Q$, तक एक आवेशित कण की गति से, कण पर एक स्थिर विद्युत क्षेत्र द्वारा परिणामी किया गया कार्य, बिन्दु $P$ से बिन्दु $Q$ तक जोड़े जाने वाले पथ से स्वतंत्र है।
कथन$-2 :$ एक संरक्षी बल द्वारा एक पिण्ड पर, एक बन्द लूप में गति करने से किया गया परिणामी कार्य शून्य है।
एक इलेक्ट्रॉन विराम से $50\, V$ विभव वाले बिन्दु से $70\, V$ विभव वाले बिन्दु तक गति करता है, अंतिम अवस्था में इसकी गतिज ऊर्जा होगी
इस प्रश्न में प्रकथन $1$ एवं प्रकथन $2$ दिये हुए हैं। प्रकथनों के पश्चात् दिये गये चार विकल्पों में से, उस विकल्प को चुनिए जोकि दोनों प्रकथनों का सर्वोत्तम वर्णन करता है।
त्रिज्या $R$ के एक विध्युत रोधी ठोस गोले पर एकसमान धनात्मक आवेश घनत्व $\rho$ हैं। इस एकसमान आवेश वितरण कें कारण विध्युत विभव का मान गोले के केन्द्र पर, गोले के पृष्ठ पर और गोले से बाहर एक बिन्दु पर परिमित है। अनन्त पर विध्युत विभव का मान शून्य है
प्रकथन $1 :$ जव एक आवेश $q$ को गोले के केन्द्र से पृष्ठ तक ले जाया जाता है, तब स्थितिज ऊर्जा में $\frac{q \rho}{38_{0}}$ से परिवर्तन होता है।
प्रकथन $2 :$ गोले के केन्द्र से दूरी $r( r < R)$ पर विध्युत क्षेत्र $\frac{\rho r}{3 \varepsilon_{0}}$ है।