Two equally charged, identical metal spheres $A$ and $B$ repel each other with a force '$F$'. The spheres are kept fixed with a distance '$r$' between them. A third identical, but uncharged sphere $C$ is brought in contact with $A$ and then placed at the mid-point of the line joining $A$ and $B$. The magnitude of the net electric force on $C$ is

  • A

    $F$

  • B

    $3F/4$

  • C

    $F/2$

  • D

    $F/4$

Similar Questions

Two charges $-\mathrm{q}$ each are fixed separated by distance $2\mathrm{d}$. A third charge $\mathrm{d}$ of mass $m$ placed at the midpoint is displaced slightly by $x (x \,<\,<\, d)$ perpendicular to the line joining the two fixed charged as shown in figure. Show that $\mathrm{q}$ will perform simple harmonic oscillation of time period.  $T =\left[\frac{8 \pi^{3} \epsilon_{0} m d^{3}}{q^{2}}\right]^{1 / 2}$

In the given figure two tiny conducting balls of identical mass $m$ and identical charge $q$ hang from non-conducting threads of equal length $L$. Assume that $\theta$ is so small that $\tan \theta \approx \sin \theta $, then for equilibrium $x$ is equal to

A total charge $Q$ is broken in two parts ${Q_1}$ and ${Q_2}$ and they are placed at a distance $R$ from each other. The maximum force of repulsion between them will occur, when

The electrostatic force of interaction between an uniformly charged rod having total charge $Q$ and length $L$ and a point charge $q$ as shown in figure is

An isolated solid metallic sphere is given $ + Q$ charge. The charge will be distributed on the sphere