Two concentric conducting thin spherical shells of radii $a$ and $b\  (b > a)$ are given charges $Q$ and $ -2Q$ respectively. The electric field along a line passing through centre as a function of distance $(r)$ from centre is given by

  • A
    818-a2
  • B
    818-b2
  • C
    818-c2
  • D
    818-d2

Similar Questions

The electric field $E$ is measured at a point $P (0,0, d )$ generated due to various charge distributions and the dependence of $E$ on $d$ is found to be different for different charge distributions. List-$I$ contains different relations between $E$ and $d$. List-$II$ describes different electric charge distributions, along with their locations. Match the functions in List-$I$ with the related charge distributions in List-$II$.

 List-$I$  List-$II$
$E$ is independent of $d$ A point charge $Q$ at the origin
$E \propto \frac{1}{d}$ A small dipole with point charges $Q$ at $(0,0, l)$ and $- Q$ at $(0,0,-l)$. Take $2 l \ll d$.
$E \propto \frac{1}{d^2}$ An infinite line charge coincident with the x-axis, with uniform linear charge density $\lambda$
$E \propto \frac{1}{d^3}$ Two infinite wires carrying uniform linear charge density parallel to the $x$-axis. The one along ( $y=0$, $z =l$ ) has a charge density $+\lambda$ and the one along $( y =0, z =-l)$ has a charge density $-\lambda$. Take $2 l \ll d$
  plane with uniform surface charge density

 

  • [IIT 2018]

The region between two concentric spheres ofradii '$a$' and '$b$', respectively (see figure), have volume charge density $\rho = \frac{A}{r}$ where $A$ is a constant and $r$ is the distance from the centre. At the centre of the spheres is a point charge $Q$. The value of $A$ such that the electric field in the region between the spheres will be constant, is :

  • [JEE MAIN 2016]

Two infinite planes each with uniform surface charge density $+\sigma$ are kept in such a way that the angle between them is $30^{\circ} .$ The electric field in the region shown between them is given by

  • [JEE MAIN 2020]

Two large, thin metal plates are parallel and close to each other. On their inner faces, the plates have surface charge densities of opposite signs and of magnitude $17.0\times 10^{-22}\; C/m^2$. What is $E$:

$(a)$ in the outer region of the first plate,

$(b)$ in the outer region of the second plate, and

$(c)$ between the plates?

A hollow charged conductor has a tiny hole cut into its surface. Show that the electric field in the hole is $\left(\sigma / 2 \varepsilon_{0}\right) \hat{ n },$ where $\hat{ n }$ is the unit vector in the outward normal direction, and $\sigma$ is the surface charge density near the hole.