The region between two concentric spheres ofradii '$a$' and '$b$', respectively (see figure), have volume charge density $\rho = \frac{A}{r}$ where $A$ is a constant and $r$ is the distance from the centre. At the centre of the spheres is a point charge $Q$. The value of $A$ such that the electric field in the region between the spheres will be constant, is :
$\frac{{2Q}}{{\pi \left( {{a^2} - {b^2}} \right)}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;$
$\;\frac{{2Q}}{{\pi {a^2}}}$
$\;\frac{Q}{{2\pi {a^2}}}$
$\;\frac{Q}{{2\pi \left( {{b^2} - {a^2}} \right)}}$
Which of the following graphs shows the variation of electric field $E$ due to a hollow spherical conductor of radius $R$ as a function of distance $r$ from the centre of the sphere
Obtain Coulomb’s law from Gauss’s law.
A spherically symmetric charge distribution is characterised by a charge density having the following variations
$\rho (r)\, = \,{\rho _0}\left( {1 - \frac{r}{R}} \right)$ for $r < R$
$\rho (r)\,=\,0$ for $r\, \ge \,R$
Where $r$ is the distance from the centre of the charge distribution $\rho _0$ is a constant. The electric field at an internal point $(r < R)$ is
A spherically symmetric charge distribution is considered with charge density varying as
$\rho(r)=\left\{\begin{array}{ll}\rho_{0}\left(\frac{3}{4}-\frac{r}{R}\right) & \text { for } r \leq R \\ \text { Zero } & \text { for } r>R\end{array}\right.$
Where, $r ( r < R )$ is the distance from the centre $O$ (as shown in figure). The electric field at point $P$ will be.
The electric field at a distance $r$ from the centre in the space between two concentric metallic spherical shells of radii $r_1$ and $r_2$ carrying charge $Q_1$ and $Q_2$ is $(r_1 < r < r_2)$