Two coils are placed close to each other. The mutual inductance of the pair of coils depends upon
The currents in the two coils
The rates at which currents are changing in the two coils
Relative position and orientation of the two coils
The materials of the wires of the coils
There are two long co -axial solenoids of same length $l.$ The inner and outer coils have radii $r_1$ and $r_2$ and number of turns per unit length $n_1$ and $n_2$ respectively. The ratio of mutual inductance to the self -inductance of the inner -coil is
Two coaxial solenoids are made by winding thin insulated wire over a pipe of cross-sectional area $A = 10\ cm^2$ and length$= 20\ cm$. If one of the solenoid has $300$ turns and the other $400$ turns, their mutual inductance is
$\mu_{0}=4 \pi \times 10^{-7} \;TmA ^{-1}$
Find the mutual inductance in the arrangement, when a small circular loop of wire of radius ' $R$ ' is placed inside a large square loop of wire of side $L$ $( L \gg R )$. The loops are coplanar and their centres coincide :
A solenoid has $2000$ turns wound over a length of $0.3\,m$. The area of cross-section is $1.2\times10^{-3}\,m^2$. Around its central section a coil of $300$ turns is closely wound. If an initial current of $1\,A$ is reversed in $0.25\,s$. Find the emf induced in the coil.......$mV$
A small square loop of wire of side $l$ is placed inside a large square loop of wire $L(L \gg l)$. Both loops are coplanar and their centres coincide at point $O$ as shown in figure. The mutual inductance of the system is.