Two cars of masses $m_1$ & $m_2$ are moving along the circular paths of radius $r_1$ & $r_2$ respectively. Their speeds are such that they complete one round in same time. The ratio of angular speeds of two cars is
$m_1 : m_2$
$r_1 : r_2$
$1 : 1$
$m_1r_1 : m_2r_2$
ball is thrown from a point with a speed $‘v_0$’ at an elevation angle of $\theta $ . From the same point and at the same instant, a person starts running with a constant speed $\frac{{'{v_0}'}}{2}$ to catch the ball. Will the person be able to catch the ball? If yes, what should be the angle of projection $\theta $ ?
A small body of mass $m$ slides down from the top of a hemisphere of radius $r$. The surface of block and hemisphere are frictionless. The height at which the body lose contact with the surface of the sphere is
A particle is projected from a horizontal plane such that its velocity vector at time $t$ is given by $\vec v = a\hat i + (b - ct)\hat j$ . Its range on the horizontal plane is given by
A particle has initial velocity $(3\hat i + 4\hat j$$ ) $ and has acceleration $(0.4\,\hat i + 0.3\,\hat j)$ . Its speed after $10\,s$ is
A particle of mass $m$ is projected with a velocity $V$ making an angle of $45^o$ with the horizontal. The magnitude of the angular momentum of the projectile about the point of projection when the particle is at its maximum height $h$ is