A particle does uniform circular motion in a horizontal plane. The radius of the circle is $20$ cm. The centripetal force acting on the particle is $10\, N$. It's kinetic energy is ........ $J$
$0.1 $
$0.2$
$2.0 $
$1.0$
If the instantaneous velocity of a particle projected as shown in figure is given by $v =a \hat{ i }+(b-c t) \hat{ j }$, where $a, b$, and $c$ are positive constants, the range on the horizontal plane will be
For a particle in uniform circular motion, the acceleration $\overrightarrow{ a }$ at any point $P ( R , \theta)$ on the circular path of radius $R$ is (when $\theta$ is measured from the positive $x\,-$axis and $v$ is uniform speed)
Two seconds after projection a projectile is travelling in a direction inclined at $30^o$ to horizontal, after one more second it is travelling horizontally. What is the magnitude and direction of its velocity at initial point
A body of mass $m$ is suspended from a string of length $l$. What is minimum horizontal velocity that should be given to the body in its lowest position so that it may complete one full revolution in the vertical plane with the point of suspension as the centre of the circle
A point $P$ moves in counter clock wise direction on a circular path as shown in figure. The movement of $'P'$ is such that it sweeps out a length $S = t^3 + 5$, where $'S'$ is in meter and $t$ is in seconds. The radius of the path is $20\, m$. The acceleration of $'P'$ when $t = 2\, sec$. is nearly ......... $m/s^2$