Two bodies with masses $M_1$ and $M_2$ have equal kinetic energies. If $p_1$ and $p_2$ are their respective momenta, then $p_1/p_2$ is equal to
$M_1 : M_2$
$M_2 : M$
$M_1^2:M_2^2$
$\sqrt {{M_1}} :\sqrt {{M_2}} $
A body of mass $m$ is moving in a circle of radius $r$ with a constant speed $v$. The force on the body is $\frac{{m{v^2}}}{r}$ and is directed towards the centre. What is the work done by this force in moving the body over half the circumference of the circle
A bullet of mass $m$ moving with a speed $v$ strikes a wooden block of mass $M$ and gets embedded into the block. The final speed is
A particle moves under the effect of a force $F = cx$ from $x = 0$ to $x = x_1$. The work done in the process is
A force of $\left( {2\widehat i + 3\widehat j + 4\widehat k} \right)\,N$ acts on a body for $4\, sec$ and produces a displacement of $\left( {3\widehat i + 4\widehat j + 5\widehat k} \right)\,m$. The power used is :- ............... $\mathrm{W}$
A force $F = - K(yi + xj)$ (where K is a positive constant) acts on a particle moving in the xy-plane. Starting from the origin, the particle is taken along the positive x-axis to the point $(a, 0)$ and then parallel to the y-axis to the point $(a, a)$. The total work done by the force F on the particles is