A force of $\left( {2\widehat i + 3\widehat j + 4\widehat k} \right)\,N$ acts on a body for $4\, sec$ and produces a displacement of $\left( {3\widehat i + 4\widehat j + 5\widehat k} \right)\,m$. The power used is :- ............... $\mathrm{W}$

  • A

    $4.5$

  • B

    $6.5$

  • C

    $7.5$

  • D

    $9.5$

Similar Questions

A body is falling under gravity from rest. When it loses a gravitational potential energy by $U,$ its speed increases to $v.$ The mass of the body shall be

A body constrained to move along $y-$ axis is subjected to a constant force $\vec F =  - \hat i + 2\hat j + 3\hat k\,N$ The work done by this force in moving the body a distance of $4\, m$ along $y-$ axis is ............... $\mathrm{J}$

Two identical $5\,\,kg.$  blocks are moving with same speed of $2\,\,m/s$  towards each other along a frictionless horizontal surface. The two blocks collide, stick together and come to rest. Consider to two blocks as a system, the work done on the system by the external forces will be .............. $\mathrm{Joule}$

A body of mass $m$ is accelerated uniformly from rest to a speed $v$ in a time $T$. The instantaneous power delivered to the body as a function of time is given by

Four particles $A, B, C$ and $D$ of equal mass are placed at four corners of a square.  They move with equal uniform speed $v$ towards the intersection of  the diagonals. After  collision, $A$ comes to rest, $B$ traces its path back with same speed and $C$ and $D$ move with equal speeds. What is the velocity of $C$ after collision