A force of $\left( {2\widehat i + 3\widehat j + 4\widehat k} \right)\,N$ acts on a body for $4\, sec$ and produces a displacement of $\left( {3\widehat i + 4\widehat j + 5\widehat k} \right)\,m$. The power used is :- ............... $\mathrm{W}$
$4.5$
$6.5$
$7.5$
$9.5$
A body is falling under gravity from rest. When it loses a gravitational potential energy by $U,$ its speed increases to $v.$ The mass of the body shall be
A body constrained to move along $y-$ axis is subjected to a constant force $\vec F = - \hat i + 2\hat j + 3\hat k\,N$ The work done by this force in moving the body a distance of $4\, m$ along $y-$ axis is ............... $\mathrm{J}$
Two identical $5\,\,kg.$ blocks are moving with same speed of $2\,\,m/s$ towards each other along a frictionless horizontal surface. The two blocks collide, stick together and come to rest. Consider to two blocks as a system, the work done on the system by the external forces will be .............. $\mathrm{Joule}$
A body of mass $m$ is accelerated uniformly from rest to a speed $v$ in a time $T$. The instantaneous power delivered to the body as a function of time is given by
Four particles $A, B, C$ and $D$ of equal mass are placed at four corners of a square. They move with equal uniform speed $v$ towards the intersection of the diagonals. After collision, $A$ comes to rest, $B$ traces its path back with same speed and $C$ and $D$ move with equal speeds. What is the velocity of $C$ after collision