Three positive charges of equal value $q$ are placed at vertices of an equilateral triangle. The resulting lines of force should be sketched as in
What will be the total flux through the faces of the cube as in figure with side of length $a$ if a charge $q$ is placed at ?
$(a)$ $A$ $:$ a corner of the cube.
$(b)$ $B$ $:$ midpoint of an edge of the cube.
A charge $Q$ is placed at a distance $a/2$ above the centre of the square surface of edge $a$ as shown in the figure. The electric flux through the square surface is
A cube is placed inside an electric field, $\overrightarrow{{E}}=150\, {y}^{2}\, \hat{{j}}$. The side of the cube is $0.5 \,{m}$ and is placed in the field as shown in the given figure. The charge inside the cube is $.....\times 10^{-11} {C}$
Consider an electric field $\vec{E}=E_0 \hat{x}$, where $E_0$ is a constant. The flux through the shaded area (as shown in the figure) due to this field is
A long cylindrical volume contains a uniformly distributed charge of density $\rho \;Cm ^{-3}$. The electric field inside the cylindrical volume at a distance $x =\frac{2 \varepsilon_{0}}{\rho} m$ from its axis is $.......Vm ^{-1}$