Three infinitely long charge sheets are placed as shown in figure. The electric field at point $P$ is
$\frac{{2\sigma }}{{{\varepsilon _o}}}$$\hat k$
$ - \frac{{2\sigma }}{{{\varepsilon _o}}}$$\hat k$
$\frac{{4\sigma }}{{{\varepsilon _o}}}$$\hat k$
$ - \frac{{4\sigma }}{{{\varepsilon _o}}}$$\hat k$
The electric field due to a uniformly charged sphere of radius $R$ as a function of the distance $r$ from its centre is represented graphically by
Obtain Gauss’s law from Coulomb’s law.
A uniform rod $AB$ of mass $m$ and length $l$ is hinged at its mid point $C$ . The left half $(AC)$ of the rod has linear charge density $-\lambda $ and the right half $(CB)$ has $+\lambda $ where $\lambda $ is constant . A large non conducting sheet of unirorm surface charge density $\sigma $ is also .present near the rod. Initially the rod is kept perpendicular to the sheet. The end $A$ of the rod is initially at a distance $d$ . Now the rod is rotated by a small angle in the plane of the paper and released. The time period of small angular oscillations is
Two concentric conducting thin spherical shells of radii $a$ and $b\ (b > a)$ are given charges $Q$ and $ -2Q$ respectively. The electric field along a line passing through centre as a function of distance $(r)$ from centre is given by
Charges $Q, 2Q$ and $4Q$ are uniformly distributed in three dielectric solid spheres $1,2$ and $3$ of radii $R/2, R$ and $2 R$ respectively, as shown in figure. If magnitudes of the electric fields at point $P$ at a distance $R$ from the centre of spheres $1,2$ and $3$ are $E_1 E_2$ and $E_3$ respectively, then