ત્રણ સિક્કા એકવાર ઉછાળવામાં આવે છે. નીચેની ઘટનાઓનું વર્ણન કરો :
પરસ્પર નિવારક અને નિઃશેષ ત્રણ ઘટનાઓ
When three coins are tossed, the sample space is given by
$S =\{ HHH , \,HHT , \,HTH ,\, HTT , \,THH , \,THT , \,TTH , \,TTT \}$
Three events that are mutually exclusive and exhaustive can be
$A:$ getting no heads
$B:$ getting exactly one head
$C:$ getting at least two heads
i.e. $A=\{T T T\}$
$B =\{ HTT , \, THT, \,TTH \}$
$C =\{ HHH , \,HHT ,\, HTH , \,THH \}$
This is because $A \cap B=B \cap C$ $=C \cap A=\phi$ and $A \cup B \cup C=S$
બે પાસાને ઉછાળવામાં આવે છે . જો બંને પાસા પરના અંકો $1,2,3,5,7$ અને $11$ હોય તો બંને પાસા ઉપર આવતા અંકોનો સરવાળો $8$ કે તેના કરતાં ઓછો થાય તેની સંભાવના મેળવો.
ત્રણ સિક્કાઓને એકવાર ઉછાળવામાં આવે છે. જો ત્રણ છાપ દેખાય તેને ઘટના $A$ , બે છાપ અને એક કાંટો દેખાય તેને ઘટના $B$, ત્રણે કાંટા દેખાય તેને ઘટના $C$ અને પહેલા સિક્કા ઉપર છાપ દેખાય તેને ઘટના $D$ દ્વારા દર્શાવવામાં આવે છે. કઈ ઘટનાઓ પ્રાથમિક છે ?
રજાઓમાં વીણાએ ચાર શહેરો $A, B, C$ અને $D$ ની યાદચ્છિક ક્રમમાં યાત્રા કરી છે. શું સંભાવના છે કે એણે $A$ ની યાત્રા પહેલાં અને $B$ ની છેલ્લે યાત્રા કરી ?
બે પાસાઓ (એક વાદળી અને બીજો લાલ)ને ફેંકવાના પ્રયોગ સાથે સંકળાયેલ નિદર્શાવકાશ શોધો. વળી, આ નિદર્શાવકાશના ઘટકોની સંખ્યા શોધો.
એક સિક્કાને ત્રણવાર ઉછાળવામાં આવે છે. નીચે આપેલ ઘટનાઓનો વિચાર કરો :
$A :$ ‘કોઈ છાપ મળતી નથી,
$B :$ ‘એક જ છાપ મળે છે અને
$C:$ “ઓછામાં ઓછી બે છાપ મળે છે”.
શું આ પરસ્પર નિવારક અને નિઃશેષ ઘટનાઓનો ગણ છે ?