ત્રણ સિક્કાઓને એકવાર ઉછાળવામાં આવે છે. જો ત્રણ છાપ દેખાય તેને ઘટના $A$ , બે છાપ અને એક કાંટો દેખાય તેને ઘટના $B$, ત્રણે કાંટા દેખાય તેને ઘટના $C$ અને પહેલા સિક્કા ઉપર છાપ દેખાય તેને ઘટના $D$ દ્વારા દર્શાવવામાં આવે છે. કઈ ઘટનાઓ પરસ્પર નિવારક છે ?
When three coins are tossed, the sample space is given by
$S =\{ HHH ,\, HHT , \,HTH ,\, HTT , \,THH ,\, THT , \,TTH , \,TTT \}$
Accordingly,
$A=\{H H H\}$
$B =\{ HHT ,\, HTH ,\, THH \}$
$C =\{ TTT \}$
$D =\{ HHH , \,HHT , \,HTH , \,HTT \}$
We now observe that
$A \cap B$ $=\phi, A \cap C$ $=\phi, A \cap D$ $=\{H H H\} \neq \phi$
$B \cap C=\phi, B \cap D$ $=\{H H T,\, H T H\} \neq \phi$
$C \cap D=\phi$
Event $A$ and $B$ ; event $A$ and $C$; event $B$ and $C$; and event $C$ and $D$ are all mutually exclusive.
ત્રણ વિર્ધાર્થીં $A, B, C$ ને ગણિતનો દાખલો આપવામાં આવે છે તે ઉકેલવાની સંભાવના અનુક્રમે $1/2, 1/3$ અને $1/4$ છે તો દાખલો ઉકેલવાની સંભાવના કેટલી થાય ?
ત્રણ સિક્કાઓને એકવાર ઉછાળવામાં આવે છે. જો ત્રણ છાપ દેખાય તેને ઘટના $A$ , બે છાપ અને એક કાંટો દેખાય તેને ઘટના $B$, ત્રણે કાંટા દેખાય તેને ઘટના $C$ અને પહેલા સિક્કા ઉપર છાપ દેખાય તેને ઘટના $D$ દ્વારા દર્શાવવામાં આવે છે. કઈ ઘટનાઓ સંયુક્ત છે ?
બે પાસાઓ ફેંકવામાં આવે છે. ઘટનાઓ $A, B$ અને $C$ નીચે આપેલ છે.
$A :$ પહેલા પાસા ઉપર યુગ્મ સંખ્યા મળે છે.
$B:$ પહેલા પાસા ઉપર અયુગ્મ સંખ્યા મળે છે.
$C :$ પાસાઓ ઉપર મળતી સંખ્યાઓનો સરવાળો $5$ કે $5$ થી ઓછો છે.
$A$ અને $B'$ પરસ્પર નિવારક છે.
ઘટના $A$ ની સંભાવના $0.5$ અને $B$ ની $0.3$ છે. જો $A$ અને $B$ એ પરસ્પર નિવારક ઘટના હોય તોે $A$ અથવા $B$ પૈકી એકપણ ન બને તેની સંભાવના મેળવો.
$PROBABILITY$ શબ્દના અક્ષરોમાંથી એક અક્ષર પસંદ થયેલ અક્ષર સ્વર હોય તેની સંભાવના ........ છે.