तीन आवेश ‘$a$’ भुजा वाले समबाहु त्रिभुज के शीर्षों पर रखे हैं। शीर्ष $A$ पर रखे आवेश द्वारा अनुभव किया गया बल $BC$ के लम्बवत् दिशा में होगा
${Q^2}/(4\pi {\varepsilon _0}{a^2})$
$ - {Q^2}/(4\pi {\varepsilon _0}{a^2})$
शून्य
${Q^2}/(2\pi {\varepsilon _0}{a^2})$
दो ताँबे की गेंदें, प्रत्येक का भार $10\, gm$ है। एक दूसरे से वायु में $10\,cm$ दूर रखी हैं। यदि प्रत्येक ${10^6}$ परमाणुओं से एक इलेक्ट्रॉन एक गेंद से दूसरी गेंद की ओर स्थानान्तरित होता है। इनके मध्य कूलॉम बल है। (ताँबे का परमाणु भार $63.5$ है)
धातु के गोले $A$ व $B$ जिनमें $A$ की त्रिज्या $B$ की तुलना में अधिक है, एक पतले तार से जुड़े हैं। इस समायोजन को कुछ आवेश दिया जाता है, अधिक आवेश होगा
द्रव्यमान $1\, mg$ और आवेश $q$ का कोई कण, एक दूसरे से $2\, m$ दूरी पर स्थित दो स्थिर आवेशों जिनमें प्रत्येक का आवेश $q$ है, के मध्यबिन्दु पर स्थित है। यदि मध्य बिन्दु स्थित कण मुक्त आवेश को अपनी साम्य स्थिति से किसी दूरी $'x'$ $( x \,<\,1 \,m )$ तक विस्थापित करे, तो यह कण सरल आवर्त गति करने लगता है। इसके दोलन की कोणीय आवत्ति $.........\,\times 10^{8}\, rad / s$ होगी यदि $q ^{2}=10 \,C ^{2}$ ।
लम्बाई $l$ की दो द्रव्यमानहीन डोरियो द्वारा एक उभयनिष्ठ बिन्दु से दो एकसमान आवेशित गोले लटकाये गये है, जों कि प्रारम्भ में दूरी $d(d$ $ < < l)$ पर अपनें अन्योन्य विकषर्ण के कारण है। दोंनों गोलों से आवेश एक स्थिर दर से लीक होना प्रारम्भ करता है। इसके परिणाम स्वरूप आवेश एक दूसरे की ओर $v$ वेग से गति करना प्रारम्भ करते है। तब दोनों के बीच दूरी $x$ के फलन के रूप में
निर्वात में '$r$' सेमी की दूरी पर स्थित दो बिन्दु आवेशों $\mathrm{q}_1$ व $\mathrm{q}_2$ के बीच लगने वाला बल $\mathrm{F}$ है। $K=5$ परावैद्युतांक वाले माध्यम में ' $r / 5$ ' सेमी. दूरी पर स्थित उन्हीं आवेशों की बीच लगने वाला बल होगा :