तीन आवेश ‘$a$’ भुजा वाले समबाहु त्रिभुज के शीर्षों पर रखे हैं। शीर्ष $A$ पर रखे आवेश द्वारा अनुभव किया गया बल $BC$ के लम्बवत् दिशा में होगा
${Q^2}/(4\pi {\varepsilon _0}{a^2})$
$ - {Q^2}/(4\pi {\varepsilon _0}{a^2})$
शून्य
${Q^2}/(2\pi {\varepsilon _0}{a^2})$
चार आवेश जिनमें प्रत्येक का परिमाण $-Q$ है किसी वर्ग के चार शीर्षों पर रखे हैं तथा इसके केन्द्र पर कोई आवेश $q$ स्थित है। यदि समस्त निकाय साम्यावस्था में है तो $q$ का मान है
अनंत बिन्दु आवेशों, जिनमें प्रत्येक पर $1\, \mu \,C$ का आवेश है। को $y$-अक्ष के अनुदिश $y =1 \,m , 2\,m$, $4\, m , 8\, m \ldots$ रखा गया है। मूलबिन्दु पर रखे $1\, C$ बिन्दु आवेश पर लगने वाला कुल बल $x\, \times 10^{3}\, N$ है। यहाँ $x$ का मान निकटतम पूर्णांक $......$ होगा। $\left[\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} \,N\,m ^{2} / C ^{2}\right.$ लीजिए । $]$
दो समान ऋण आवेश $q$, $q$, $Y$-अक्ष पर बिन्दुओं $(0,\,a)$ तथा $(0,\, - a)$ पर स्थित हैं। एक धन आवेश $Q$, $X$-अक्ष पर बिन्दु $(2a,\,0)$ पर विरामावस्था से मुक्त किया जाता है। आवेश $Q$
$-q$ आवेश तथा $m$ द्रव्यमान का एक कण $+\lambda$. रेखीय आवेश घनत्व के एक अनंत लम्बे रेखीय आवेश के परितः $r$ त्रिज्या के एक वृत्त में गति करता है। तब इसका आवर्त काल होगा
( $k$ को कूलॉम नियतांक मानकर)
दो समान आवेशित कण जिनमें से प्रत्येक का द्रव्यमान $10\,g$ तथा आवेश $2.0 \times 10^{-7}\,C$ कूलाम है, एक क्षैतिज मेज पर $L$ दूरी पर सीमित संतुलन की स्तिथि में स्थित है। यदि प्रत्येक कण और मेज के मध्य घर्षण गुणांक $0.25$ है तो $L$ का मान $........$ $\left[ g =10\,ms ^{-2}\right]$