The value of the determinant $\left| {\,\begin{array}{*{20}{c}}{31}&{37}&{92}\\{31}&{58}&{71}\\{31}&{105}&{24}\end{array}\,} \right|$ is

  • A

    $-2$

  • B

    $0$

  • C

    $81$

  • D

    None of these

Similar Questions

Let $f (x) =$ $\left| {\begin{array}{*{20}{c}}{1\, + \,{{\sin }^2}x}&{{{\cos }^2}x}&{4\,\sin \,2x}\\{{{\sin }^2}x}&{1\, + \,{{\cos }^2}x}&{4\,\sin \,2x}\\{{{\sin }^2}x}&{{{\cos }^2}x}&{1\, + \,4\,\sin \,2x}\end{array}} \right|$, then the maximum value of $f (x) =$

Let $P$ be a matrix of order $3 \times 3$ such that all the entries in $P$ are from the set $\{-1,0,1\}$. Then, the maximum possible value of the determinant of $P$ is. . . . . . .

  • [IIT 2018]

$\left| {\begin{array}{*{20}{c}}{1 + {{\sin }^2}\theta }&{{{\sin }^2}\theta }&{{{\sin }^2}\theta }\\{{{\cos }^2}\theta }&{1 + {{\cos }^2}\theta }&{{{\cos }^2}\theta }\\{4\sin 4\theta }&{4\sin 4\theta }&{1 + 4\sin 4\theta }\end{array}} \right| = 0$ then $\sin \,4\theta $ equal to

$\left| {\,\begin{array}{*{20}{c}}{{b^2} - ab}&{b - c}&{bc - ac}\\{ab - {a^2}}&{a - b}&{{b^2} - ab}\\{bc - ac}&{c - a}&{ab - {a^2}}\end{array}\,} \right| = $

If $a,b,c$ are distinct and rational numbers then $\left| {\begin{array}{*{20}{c}}
{\left( {{a^2} + {b^2} + {c^2}} \right)}&{ab + bc + ca}&{ab + bc + ca}\\
{ab + bc + ca}&{\left( {{a^2} + {b^2} + {c^2}} \right)}&{\left( {bc + ca + ab} \right)}\\
{ab + bc + ca}&{\left( {ab + bc + ca} \right)}&{\left( {{a^2} + {b^2} + {c^2}} \right)}
\end{array}} \right|$ is always