The value of $\sum \limits_{n=0}^{1947} \frac{1}{2^n+\sqrt{2^{1994}}}$ is equal to
$\frac{487}{\sqrt{2^{1945}}}$
$\frac{1946}{\sqrt{2^{1947}}}$
$\frac{1947}{\sqrt{2^{1947}}}$
$\frac{1948}{\sqrt{2^{1947}}}$
Domain of the function $f(x) = {\sin ^{ - 1}}\left( {\frac{{2 - |x|}}{4}} \right) + {\cos ^{ - 1}}\left( {\frac{{2 - |x|}}{4}} \right) + {\tan ^{ - 1}}\left( {\frac{{2 - |x|}}{4}} \right)$ is
For $x\,\, \in \,R\,,x\, \ne \,0,$ let ${f_0}(x) = \frac{1}{{1 - x}}$ and ${f_{n + 1}}(x) = {f_0}({f_n}(x)),$ $n\, = 0,1,2,....$ Then the value of ${f_{100}}(3) + {f_1}\left( {\frac{2}{3}} \right) + {f_2}\left( {\frac{3}{2}} \right)$ is equal to
Let $f : R \rightarrow R$ be a continuous function such that $f(3 x)-f(x)=x$. If $f(8)=7$, then $f(14)$ is equal to.
Define a function $f(x)=\frac{16 x^2-96 x+153}{x-3}$ for all real $x \neq 3$. The least positive value of $f(x)$ is
The domain of ${\sin ^{ - 1}}\left[ {{{\log }_3}\left( {\frac{x}{3}} \right)} \right]$ is