For $x\,\, \in \,R\,,x\, \ne \,0,$ let ${f_0}(x) = \frac{1}{{1 - x}}$ and ${f_{n + 1}}(x) = {f_0}({f_n}(x)),$ $n\, = 0,1,2,....$  Then the value of ${f_{100}}(3) + {f_1}\left( {\frac{2}{3}} \right) + {f_2}\left( {\frac{3}{2}} \right)$ is equal to

  • [JEE MAIN 2016]
  • A

    $\frac {8}{3}$

  • B

    $\frac {4}{3}$

  • C

    $\frac {5}{3}$

  • D

    $\frac {1}{3}$

Similar Questions

If the domain of the function $f(x)=\sec ^{-1}\left(\frac{2 x}{5 x+3}\right)$ is $[\alpha, \beta) \cup(\gamma, \delta]$, then $|3 \alpha+10(\beta+\gamma)+21 \delta|$ is equal to $.......$.

  • [JEE MAIN 2023]

Let $[t]$ be the greatest integer less than or equal to $t$. Let $A$ be the set of al prime factors of $2310$ and $f: A \rightarrow \mathbb{Z}$ be the function $f(x)=\left[\log _2\left(x^2+\left[\frac{x^3}{5}\right]\right)\right]$. The number of one-to-one functions from $A$ to the range of $f$ is :

  • [JEE MAIN 2024]

Let $f ^1( x )=\frac{3 x +2}{2 x +3}, x \in R -\left\{\frac{-3}{2}\right\}$ For $n \geq 2$, define $f ^{ n }( x )= f ^1 0 f ^{ n -1}( x )$. If $f ^5( x )=\frac{ ax + b }{ bx + a }, \operatorname{gcd}( a , b )=1$, then $a + b$ is equal to $............$.

  • [JEE MAIN 2023]

The graph of function $f$ contains the point $P (1, 2)$ and $Q(s, r)$. The equation of the secant line through $P$ and $Q$ is $y = \left( {\frac{{{s^2} + 2s - 3}}{{s - 1}}} \right)$ $x - 1 - s$. The value of $f ‘ (1)$, is

The domain of the function $f(x)=\frac{1}{\sqrt{[x]^2-3[x]-10}}$ is (where $[x]$ denotes the greatest integer less than or equal to $x$ )

  • [JEE MAIN 2023]