$\lambda$ तथा $\mu$ के वे मान जिनके लिए समीकरण निकाय $x+y+z=6,3 x+5 y+5 z=26, x+2 y+\lambda z=\mu$ का कोई हल नहीं हैं,

  • [JEE MAIN 2021]
  • A

    $\lambda=3, \mu \neq 10$

  • B

    $\lambda \neq 2, \mu=10$

  • C

    $\lambda=3, \mu=5$

  • D

    $\lambda=2, \mu \neq 10$

Similar Questions

निम्नलिखित में दिए गए शीर्ष बिंदुओं वाले त्रिभुजों का क्षेत्रफल ज्ञात कीजिए।: $(1,0),(6,0),(4,3)$

$\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{{\omega ^2}}&\omega \\1&\omega &{{\omega ^2}}\end{array}\,} \right| = $

यदि रेखीय समीकरण निकाय

$2 x + y - z =7$

$x -3 y +2 z =1$

$x +4 y +\delta z = k$ है, जहाँ $\delta, k \in R$ के अनंत हल है, तो $\delta+ k$ बराबर है :

  • [JEE MAIN 2022]

$\lambda$ के सभी मानों का समुच्चय, जिनके लिए रैखिक समीकरण निकाय $2{x_1} - 2{x_2} + {x_3} = \lambda {x_1}\;,\;2{x_1} - 3{x_2} + 2{x_3} = \lambda {x_2}\;\;,$$\;\; - {x_1} + 2{x_2} = \lambda {x_3}$ का एक अतुच्छ हल है,

  • [JEE MAIN 2015]

यदि $A = \left[ {\begin{array}{*{20}{c}}\alpha &2\\2&\alpha\end{array}} \right]$ और $|{A^3}|$=125, तो $\alpha  = $

  • [IIT 2004]