$\left| {\begin{array}{*{20}{c}}
{\sin \alpha }&{\cos \alpha }&{\sin \left( {\alpha + \gamma } \right)}\\
{\sin \beta }&{\cos \beta }&{\sin \left( {\beta + \gamma } \right)}\\
{\sin \delta }&{\cos \delta }&{\sin \left( {\gamma + \delta } \right)}
\end{array}} \right|$ મેળવો.
$\sin \alpha \sin \beta \sin \delta $
$\cos \alpha \cos \beta \cos \delta $
$1$
$0$
જો $-9 $ એ સમીકરણ $\left| {\,\begin{array}{*{20}{c}}x&3&7\\2&x&2\\7&6&x\end{array}\,} \right| = 0$ નું બીજ હોય તો બાકી ના બે બીજ મેળવો.
જો $\left| {\,\begin{array}{*{20}{c}}a&b&c\\m&n&p\\x&y&z\end{array}\,} \right| = k$, તો $\left| {\,\begin{array}{*{20}{c}}{6a}&{2b}&{2c}\\{3m}&n&p\\{3x}&y&z\end{array}\,} \right| = $
જો સમીકરણ સંહતી $\alpha x+y+z=5, x+2 y+$ $3 z=4, x+3 y+5 z=\beta$ને અસંખ્ય ઉકેલો હોય તો,ક્રમયુક્ત જોડ $(\alpha, \beta)=\dots\dots\dots\dots$
જો સુરેખ સમીકરણ સંહતિ $2 x-3 y=\gamma+5,$ ; $\alpha x+5 y=\beta+1$ જ્યાં $\alpha, \beta, \gamma \in R$ ને અનંત ઉકેલ હોય, તો $|9 \alpha+3 \beta+5 \gamma|$ ની કિમત..........છે.
જો $p{\lambda ^4} + q{\lambda ^3} + r{\lambda ^2} + s\lambda + t = $ $\left| {\,\begin{array}{*{20}{c}}{{\lambda ^2} + 3\lambda }&{\lambda - 1}&{\lambda + 3}\\{\lambda + 1}&{2 - \lambda }&{\lambda - 4}\\{\lambda - 3}&{\lambda + 4}&{3\lambda }\end{array}\,} \right|$ તો $t$ ની કિમત મેળવો.