The number of distinct real roots of the equation $x^{5}\left(x^{3}-x^{2}-x+1\right)+x\left(3 x^{3}-4 x^{2}-2 x+4\right)-1=0$ is
If $|x - 2| + |x - 3| = 7$, then $x =$
If $\sqrt {3{x^2} - 7x - 30} + \sqrt {2{x^2} - 7x - 5} = x + 5$,then $x$ is equal to
The number of roots of the equation $|x{|^2} - 7|x| + 12 = 0$ is