The term independent of $' x '$ in the expansion of ${\left( {9\,x\,\, - \,\,\frac{1}{{3\,\sqrt x }}} \right)^{18}}, x > 0$ , is $\alpha$ times the corresponding binomial co-efficient . Then $' \alpha '$ is :

  • A

    $3$

  • B

    $\frac{1}{3}$

  • C

    $-\frac{1}{3}$

  • D

    $1$

Similar Questions

If the coefficients of $x^7$ & $x^8$ in the expansion of ${\left[ {2\,\, + \,\,\frac{x}{3}} \right]^n}$ are equal , then the value of $n$ is :

If the constant term in the binomial expansion of $\left(\sqrt{x}-\frac{k}{x^{2}}\right)^{10}$ is $405,$ then $|k|$ equals 

  • [JEE MAIN 2020]

The coefficient of $x^{2012}$ in the expansion of $(1-x)^{2008}\left(1+x+x^2\right)^{2007}$ is equal to

  • [JEE MAIN 2024]

If the second, third and fourth terms in the expansion of $(x+y)^{\mathrm{n}}$ are $135$,$30$ and $\frac{10}{3}$, respectively, then $6\left(n^3+x^2+y\right)$ is equal to .............

  • [JEE MAIN 2024]

The largest term in the expansion of ${(3 + 2x)^{50}}$ where $x = \frac{1}{5}$ is

  • [IIT 1993]