The term independent of $x$ in the expansion of $\left( {\frac{1}{{60}} - \frac{{{x^8}}}{{81}}} \right).{\left( {2{x^2} - \frac{3}{{{x^2}}}} \right)^6}$ is equal to

  • [JEE MAIN 2019]
  • A

    $36$

  • B

    $-36$

  • C

    $-108$

  • D

    $-72$

Similar Questions

If in the expansion of ${(1 + x)^{21}}$, the coefficients of ${x^r}$ and ${x^{r + 1}}$ be equal, then $r$ is equal to

If $^n{C_{r - 2}} = 36$ , $^n{C_{r - 1}} = 84$   and    $^n{C_r} = 126$ , then value of $^n{C_{2r}}$ is

Let $S=\{a+b \sqrt{2}: a, b \in Z \}, T_1=\left\{(-1+\sqrt{2})^n: n \in N \right\}$ and $T_2=\left\{(1+\sqrt{2})^n: n \in N \right\}$. Then which of the following statements is (are) $TRUE$?

$(A)$ $Z \cup T_1 \cup T_2 \subset S$

$(B)$ $T_1 \cap\left(0, \frac{1}{2024}\right)=\phi$, where $\phi$ denotes the empty set

$(C)$ $T_2 \cap(2024, \infty) \neq \phi$

$(D)$ For any given $a, b \in Z , \cos (\pi(a+b \sqrt{2}))+i \sin (\pi(a+b \sqrt{2})) \in Z$ if and only if $b=0$, where $i=\sqrt{-1}$

  • [IIT 2024]

If the ${(r + 1)^{th}}$ term in the expansion of ${\left( {\sqrt[3]{{\frac{a}{{\sqrt b }}}} + \sqrt {\frac{b}{{\sqrt[3]{a}}}} } \right)^{21}}$ has the same power of $a$ and $b$, then the value of $r$ is

The term independent of $x$ in the expansion of ${(1 + x)^n}{\left( {1 + \frac{1}{x}} \right)^n}$ is