વર્તુળ $x^2 + y^2 = 4$ પરના બિંદુ $(\sqrt 3,1)$ પર આંતરેલ અભિલંબ અને સ્પર્શક તથા $x -$ અક્ષ થી બનતા ત્રિકોણનું ક્ષેત્રફળ ચો. એકમમાં મેળવો
$\frac{1}{{\sqrt 3 }}$
$\frac{4}{{\sqrt 3 }}$
$\frac{1}{3}$
$\frac{2}{{\sqrt 3 }}$
ધારોકે $5$ ત્રિજ્યાવાળું એક વર્તુળ, $x$-અક્ષની નીચે આવેલું છ. રેખા $L_{1}: 4 x+3 y+2=0$ એ વર્તુળ $C$ ના કેન્દ્ $P$ માંથી પસાર થાય છે અને રેખા $L_{2}: 3 x-4 y-11=0$ ને છદે છે. રેખા $L_{2}$ એ $C$ ને $Q$ આગળ સ્પર્શ છે. તો $P$ નું રેખા $5 x-12 y+51=0$ થી અંતર $\dots\dots\dots$છે.
રેખા $ax + by + c = 0$ એ વર્તૂળ $x^2 + y^2 = r^2$ નો અભિલંબ છે. વર્તૂળ દ્વારા $ax + by + c = 0$ રેખા પર અંત:ખંડનાં ભાગની લંબાઈ :
વિધાન $1$ : જે વર્તુળની ત્રિજ્યા $\sqrt {10} $ અને વ્યાસ રેખા $2x + y = 5$ પર આવેલ હોય તેવું એક જ વર્તુળનું સમીકરણ $x^2 + y^2 - 6x +2y = 0$
વિધાન $2$ : સમીકરણ $2x + y = 5$ એ વર્તુળ $x^2 + y^2 -6x+2y = 0$ ને લંબ છે
અહી $B$ એ વર્તુળ $x^{2}+y^{2}-2 x+4 y+1=0$ નું કેન્દ્ર છે. અહી બે બિંદુઓ $\mathrm{P}$ અને $\mathrm{Q}$ આગળના સ્પર્શકો બિંદુ $\mathrm{A}(3,1)$ આગળ છેદે છે તો $8.$ $\left(\frac{\text { area } \triangle \mathrm{APQ}}{\text { area } \triangle \mathrm{BPQ}}\right)$ ની કિમંત મેળવો.
રેખા $x = y$ એ વર્તુળ પરના બિંદુ $(1, 1)$ આગળ સ્પર્શે છે જો વર્તુળ બિંદુ $(1, -3)$ માંથી પસાર થતું હોય તો વર્તુળની ત્રિજ્યા મેળવો.