Let $a_n$ be a sequence such that $a_1 = 5$ and $a_{n+1} = a_n + (n -2)$ for all $n \in N$, then $a_{51}$ is
$1165$
$1170$
$1175$
$1180$
Let $3,7,11,15, \ldots, 403$ and $2,5,8,11, \ldots, 404$ be two arithmetic progressions. Then the sum, of the common terms in them, is equal to.....................
Five numbers are in $A.P.$, whose sum is $25$ and product is $2520 .$ If one of these five numbers is $-\frac{1}{2},$ then the greatest number amongst them is
Let $a$, $b$ be two non-zero real numbers. If $p$ and $r$ are the roots of the equation $x ^{2}-8 ax +2 a =0$ and $q$ and $s$ are the roots of the equation $x^{2}+12 b x+6 b$ $=0$, such that $\frac{1}{ p }, \frac{1}{ q }, \frac{1}{ r }, \frac{1}{ s }$ are in A.P., then $a ^{-1}- b ^{-1}$ is equal to $......$
The arithmetic mean of the nine numbers in the given set $\{9,99,999,...., 999999999\}$ is a $9$ digit number $N$, all whose digits are distinct. The number $N$ does not contain the digit
The ${n^{th}}$ term of an $A.P.$ is $3n - 1$.Choose from the following the sum of its first five terms