The sum of the common terms of the following three arithmetic progressions.
$3,7,11,15,...................,399$
$2,5,8,11,............,359$ and
$2,7,12,17,...........,197$, is equal to $................$.
$322$
$321$
$324$
$328$
Let $AP ( a ; d )$ denote the set of all the terms of an infinite arithmetic progression with first term a and common difference $d >0$. If $\operatorname{AP}(1 ; 3) \cap \operatorname{AP}(2 ; 5) \cap \operatorname{AP}(3 ; 7)=\operatorname{AP}( a ; d )$ then $a + d$ equals. . . . .
If the ${p^{th}}$ term of an $A.P.$ be $\frac{1}{q}$ and ${q^{th}}$ term be $\frac{1}{p}$, then the sum of its $p{q^{th}}$ terms will be
The sum of all those terms, of the anithmetic progression $3,8,13, \ldots \ldots .373$, which are not divisible by $3$,is equal to $.......$.
If $a,\;b,\;c$ are in $A.P.$, then $\frac{1}{{bc}},\;\frac{1}{{ca}},\;\frac{1}{{ab}}$ will be in
Let the sequence $a_{n}$ be defined as follows:
${a_1} = 1,{a_n} = {a_{n - 1}} + 2$ for $n\, \ge \,2$
Find first five terms and write corresponding series.