The solution set of $8x \equiv 6(\bmod 14),\,x \in Z$, are
$[8] \cup [6]$
$[8] \cup [14]$
$[6] \cup [13]$
$[8] \cup [6] \cup [13]$
If $n(A) = 4$, $n(B) = 3$, $n(A \times B \times C) = 24$, then $n(C) = $
If $A \times B=\{(a, x),(a, y),(b, x),(b, y)\} .$ Find $A$ and $B$
If $A = \{1, 2, 4\}, B = \{2, 4, 5\}, C = \{2, 5\},$ then $(A -B) × (B -C)$ is
Let $A=\{1,2\}$ and $B=\{3,4\} .$ Write $A \times B .$ How many subsets will $A \times B$ have? List them.
$A = \{1, 2, 3\}$ and $B = \{3, 8\}$, then $(A \cup B) × (A \cap B)$ is