If $n(A) = 4$, $n(B) = 3$, $n(A \times B \times C) = 24$, then $n(C) = $

  • A

    $288$

  • B

    $1$

  • C

    $12$

  • D

    $2$

Similar Questions

If $\left(\frac{x}{3}+1, y-\frac{2}{3}\right)=\left(\frac{5}{3}, \frac{1}{3}\right),$ find the values of $x$ and $y$

If $A = \{ 2,\,4,\,5\} ,\,\,B = \{ 7,\,\,8,\,9\} ,$ then $n(A \times B)$ is equal to

If two sets $A$ and $B$ are having $99$ elements in common, then the number of elements common to each of the sets $A \times B$ and $B \times A$ are

If $P,Q$ and $R$ are subsets of a set $A$, then $R × (P^c  \cup  Q^c)^c =$

Let $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{4,5,6\} .$ Find

$A \times(B \cup C)$