The solution of the equation $(x + 1) + (x + 4) + (x + 7) + ......... + (x + 28) = 155$ is
$1$
$2$
$3$
$4$
The sixth term of an $A.P.$ is equal to $2$, the value of the common difference of the $A.P.$ which makes the product ${a_1}{a_4}{a_5}$ least is given by
If $x,y,z$ are in $A.P. $ and ${\tan ^{ - 1}}x,{\tan ^{ - 1}}y$ and ${\tan ^{ - 1}}z$ are also in $A.P.$, then
If $a_m$ denotes the mth term of an $A.P.$ then $a_m$ =
If the variance of the terms in an increasing $A.P.$, $b _{1}, b _{2}, b _{3}, \ldots b _{11}$ is $90,$ then the common difference of this $A.P.$ is
Let $x_n, y_n, z_n, w_n$ denotes $n^{th}$ terms of four different arithmatic progressions with positive terms. If $x_4 + y_4 + z_4 + w_4 = 8$ and $x_{10} + y_{10} + z_{10} + w_{10} = 20,$ then maximum value of $x_{20}.y_{20}.z_{20}.w_{20}$ is-