If $x,y,z$ are in $A.P. $ and ${\tan ^{ - 1}}x,{\tan ^{ - 1}}y$ and ${\tan ^{ - 1}}z$ are also in $A.P.$, then

  • A

    $x = y = z$

  • B

    $x = y = - z$

  • C

    $x = 1;y = 2;z = 3$

  • D

    $x = 2;y = 4;z = 6$

Similar Questions

Let the sequence ${a_1},{a_2},{a_3},.............{a_{2n}}$ form an $A.P. $ Then $a_1^2 - a_2^2 + a_3^3 - ......... + a_{2n - 1}^2 - a_{2n}^2 = $

Let $AP ( a ; d )$ denote the set of all the terms of an infinite arithmetic progression with first term a and common difference $d >0$. If $\operatorname{AP}(1 ; 3) \cap \operatorname{AP}(2 ; 5) \cap \operatorname{AP}(3 ; 7)=\operatorname{AP}( a ; d )$ then $a + d$ equals. . . . .

  • [IIT 2019]

If ${a^2},\,{b^2},\,{c^2}$ be in $A.P.$, then $\frac{a}{{b + c}},\,\frac{b}{{c + a}},\,\frac{c}{{a + b}}$ will be in

Let $S _{ n }=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\ldots$ upto n terms. If the sum of the first six terms of an $A.P.$ with first term $- p$ and common difference $p$ is $\sqrt{2026 S_{2025}}$, then the absolute difference between $20^{\text {th }}$ and $15^{\text {th }}$ terms of the $A.P.$ is

  • [JEE MAIN 2025]

If the sum of $n$ terms of an $A.P.$ is $nA + {n^2}B$, where $A,B$ are constants, then its common difference will be