The set of all real numbers $x$ for which ${x^2} - |x + 2| + x > 0,$ is

  • [IIT 2002]
  • A

    $( - \infty ,\,\, - 2)\, \cup (2,\,\infty )$

  • B

    $( - \infty ,\,\, - \sqrt 2 )\, \cup (\sqrt 2 ,\,\infty )$

  • C

    $( - \infty ,\,\, - 1)\, \cup (1,\,\infty )$

  • D

    $(\sqrt 2 ,\,\infty )$

Similar Questions

Number of solutions of equation $|x^2 -2|x||$ = $2^x$ , is

The number of real roots of the equation $5 + |2^x - 1| = 2^x(2^x - 2)$ is

  • [JEE MAIN 2019]

The sum of the solutions of the equation $\left| {\sqrt x  - 2} \right| + \sqrt x \left( {\sqrt x  - 4} \right) + 2 = 0\left( {x > 0} \right)$ is equal to

  • [JEE MAIN 2019]

Let $p_1(x)=x^3-2020 x^2+b_1 x+c_1$ and $p_2(x)=x^3-2021 x^2+b_2 x+c_2$ be polynomials having two common roots $\alpha$ and $\beta$. Suppose there exist polynomials $q_1(x)$ and $q_2(x)$ such that $p_1(x) q_1(x)+p_2(x) q_2(x)=x^2-3 x+2$. Then the correct identity is

  • [KVPY 2020]

If the sum of two of the roots of ${x^3} + p{x^2} + qx + r = 0$ is zero, then $pq =$