The scale of a spring balance reading from $0$ to $10 \,kg$ is $0.25\, m$ long. A body suspended from the balance oscillates vertically with a period of $\pi /10$ second. The mass suspended is ..... $kg$ (neglect the mass of the spring)
$10$
$0.98$
$5$
$20$
Is the following Statement True or False ?
$1.$ If the spring is cut in two equal piece the spring constant of every piece decreases.
$2.$ Displacement of $SHO$ increases, its acceleration decrease.
$3.$ A system can happen to oscillate, have more than one natural frequency.
$4.$ The periodic time of $SHM$ depend on amplitude or energy or phase constant.
When a particle of mass $m$ is attached to a vertical spring of spring constant $k$ and released, its motion is described by $y ( t )= y _{0} \sin ^{2} \omega t ,$ where $'y'$ is measured from the lower end of unstretched spring. Then $\omega$ is
A particle of mass $m$ is performing linear simple harmonic motion. Its equilibrium is at $x = 0,$ force constant is $K$ and amplitude of $SHM$ is $A$. The maximum power supplied by the restoring force to the particle during $SHM$ will be
Which type of spring have fast oscillation ? Stiff or soft.
A body of mass $0.01 kg$ executes simple harmonic motion $(S.H.M.)$ about $x = 0$ under the influence of a force shown below : The period of the $S.H.M.$ is .... $s$