दो बलों का परिणामी, जिनमें से एक बल परिमाण में दूसरे का दोगुना है, अल्प परिमाण वाले पर लंलम्बवत्त है। दोनों बलों के बीच का कोण ........ $^o$ है
$60$
$120$
$150$
$90$
समान परिमाण $F$ वाले दो बल एक वस्तु पर क्रिया करते हैं और परिणामी $\frac{F}{3}$ है। इन दोनों बलों के बीच का कोण होगा
यदि $\mathop A\limits^ \to = 4\hat i - 3\hat j$ तथा $\mathop B\limits^ \to = 6\hat i + 8\hat j$ तो $\mathop A\limits^ \to \, + \mathop B\limits^ \to $ का परिमाण तथा दिशा होगी
चित्र में दिखाये गये घन की भुजा ' $a$ ' के फलक $ABOD$ के केन्द्र से फलक $BEFO$ के केन्द्र तक जाने वाला सदिश होगा ?
दो सदिशों $\mathop P\limits^ \to $ तथा $\mathop Q\limits^ \to $ का परिणामी $\mathop R\limits^ \to $ है। यदि $Q$ को दुगना कर दिया जाए तो नया सदिश $P$ के लम्बवत हो जाता है। $R$ निम्न के बराबर होगा
चित्रानुसार बलों $\overrightarrow{ OP }, \overrightarrow{ OQ }, \overrightarrow{ OR }, \overrightarrow{ OS }$ तथा $\overrightarrow{ OT }$ का परिणामी लगभग होता है।
[मान लिजिए: $\sqrt{3}=1.7, \sqrt{2}=1.4$ । दिया है $\hat{i}$ तथा $\hat{ j }$ क्रमश: $x$ तथा $y$ अक्ष के अनुदिश इकाई सदिश हैं]