चित्र में दिखाये गये घन की भुजा ' $a$ ' के फलक $ABOD$ के केन्द्र से फलक $BEFO$ के केन्द्र तक जाने वाला सदिश होगा ?
$\frac{1}{2}\,a\,\left( {\hat k - \hat i} \right)$
$\frac{1}{2}\,a\,\left( {\hat i - \hat k} \right)$
$\frac{1}{2}\,a\,\left( {\hat j - \hat i} \right)$
$\frac{1}{2}\,a\,\left( {\hat j - \hat k} \right)$
किसी सदिश $\overrightarrow{ A }$ को $\Delta \theta$ रेडियन $(\Delta \theta<<1)$ घुमा देने पर एक नया सदिश $\overrightarrow{ B }$ प्राप्त होता है। इस अवस्था में $\overrightarrow{ B }-\overrightarrow{ A } \mid$ होगा :
दो सदिश $\overrightarrow{ A }$ एवं $\overrightarrow{ B }$ के परिमाण एक समान है। यदि $\overrightarrow{ A }+\overrightarrow{ B }$ का परिमाण $\overrightarrow{ A }-\overrightarrow{ B }$ के परिमाण का दो गुना है तो $\overrightarrow{ A }$ एवं $\overrightarrow{ B }$ के बीच कोण होगा $-$
यदि $|{\mathop V\limits^ \to _1} + {\mathop V\limits^ \to _2}|\, = \,|{\mathop V\limits^ \to _1} - {\mathop V\limits^ \to _2}|$ तथा ${V_2}$ नियत हैं, तो
दो सदिश $(x + y)$ तथा $(x -y)$ किस कोण पर कार्य करें ताकि इनका परिणामी $\sqrt {({x^2} + {y^2})} $ हो सके