સંબંધ $R$ એ $N$ પર “$aRb \Leftrightarrow b$ એ $a$ વડે વિભાજય છે.”દ્વારા વ્યાખ્યાયિત હોય તો સંબંધએ . . . .   

  • A

    સ્વવાચક છે પરંતુ સંમિત નથી. 

  • B

    સંમિત છે પરંતુ પરંપરિત નથી. 

  • C

    સંમિત અને પરંપરિત છે.

  • D

    એકપણ નહીં.

Similar Questions

સંબંધ $R$ એ અરિક્ત ગણ $A$ પરનો સામ્ય સંબધ હોય તો $R$ એ  . . .  ગુણધર્મનું પાલન કરવું જોઇયે.

જે સ્વવાચક અને સંમિત હોય પરંતુ પરંપરિત ના હોય તેવા એક સંબંધનું ઉદાહરણ આપો 

કોઈ ચોક્કસ સમયે કોઈ એક નગરમાં વસતા મનુષ્યોના ગણ $A$ પર વ્યાખ્યાયિત સંબંધ $R =\{(x, y): x$ અને $y$ એક જ વિસ્તારમાં રહે છે. $\}$  સ્વવાચક, સંમિત અથવા પરંપરિત સંબંધ છે કે નહિ તે નક્કી કરો ?

ત્રણ સભ્યો ધરાવતા ગણ પર કેટલા સ્વવાચક સંબંધો મળે? 

જો ગણ $A$ ના ઘાતગણ પર "ઉપગણ" નો સંબંધએ  . . . . થાય.