સંબંધ $R$ એ $N$ પર “$aRb \Leftrightarrow b$ એ $a$ વડે વિભાજય છે.”દ્વારા વ્યાખ્યાયિત હોય તો સંબંધએ . . . .
સ્વવાચક છે પરંતુ સંમિત નથી.
સંમિત છે પરંતુ પરંપરિત નથી.
સંમિત અને પરંપરિત છે.
એકપણ નહીં.
સંબંધ $R$ એ અરિક્ત ગણ $A$ પરનો સામ્ય સંબધ હોય તો $R$ એ . . . ગુણધર્મનું પાલન કરવું જોઇયે.
જે સ્વવાચક અને સંમિત હોય પરંતુ પરંપરિત ના હોય તેવા એક સંબંધનું ઉદાહરણ આપો
કોઈ ચોક્કસ સમયે કોઈ એક નગરમાં વસતા મનુષ્યોના ગણ $A$ પર વ્યાખ્યાયિત સંબંધ $R =\{(x, y): x$ અને $y$ એક જ વિસ્તારમાં રહે છે. $\}$ સ્વવાચક, સંમિત અથવા પરંપરિત સંબંધ છે કે નહિ તે નક્કી કરો ?
ત્રણ સભ્યો ધરાવતા ગણ પર કેટલા સ્વવાચક સંબંધો મળે?
જો ગણ $A$ ના ઘાતગણ પર "ઉપગણ" નો સંબંધએ . . . . થાય.