The positive value of $a$ so that the co-efficient of $x^5$ is equal to that of $x^{15}$ in the expansion of ${\left( {{x^2}\,\, + \,\,\frac{a}{{{x^3}}}} \right)^{10}}$ is
$\frac{1}{{2\,\sqrt 3 }}$
$\frac{1}{{\sqrt 3 }}$
$1$
$2 \sqrt 3$
The coefficient of $x^9$ in the expansion of $(1+x)\left(1+x^2\right)\left(1+x^3\right) \ldots . .\left(1+x^{100}\right)$ is
If for positive integers $r > 1,n > 2$ the coefficient of the ${(3r)^{th}}$ and ${(r + 2)^{th}}$ powers of $x$ in the expansion of ${(1 + x)^{2n}}$ are equal, then
Find $a, b$ and $n$ in the expansion of $(a+b)^{n}$ if the first three terms of the expansion are $729,7290$ and $30375,$ respectively.
In the binomial expansion of ${(a - b)^n},\,n \ge 5,$ the sum of the $5^{th}$ and $6^{th}$ terms is zero. Then $\frac{a}{b}$ is equal to