The positive value of $a$ so that the co-efficient of $x^5$ is equal to that of $x^{15}$ in the expansion of ${\left( {{x^2}\,\, + \,\,\frac{a}{{{x^3}}}} \right)^{10}}$ is

  • A

    $\frac{1}{{2\,\sqrt 3 }}$

  • B

    $\frac{1}{{\sqrt 3 }}$

  • C

    $1$

  • D

    $2 \sqrt 3$

Similar Questions

The coefficient of $x^9$ in the expansion of $(1+x)\left(1+x^2\right)\left(1+x^3\right) \ldots . .\left(1+x^{100}\right)$ is

  • [IIT 2015]

If for positive integers $r > 1,n > 2$ the coefficient of the ${(3r)^{th}}$ and ${(r + 2)^{th}}$ powers of $x$ in the expansion of ${(1 + x)^{2n}}$ are equal, then

  • [AIEEE 2002]

Find $a, b$ and $n$ in the expansion of $(a+b)^{n}$ if the first three terms of the expansion are $729,7290$ and $30375,$ respectively.

In the binomial expansion of ${(a - b)^n},\,n \ge 5,$ the sum of the $5^{th}$ and $6^{th}$ terms is zero. Then $\frac{a}{b}$  is equal to

  • [IIT 2001]

The term independent of $x$ in the expansion of $\left(\frac{(x+1)}{\left(x^{2 / 3}+1-x^{1 / 3}\right)}-\frac{(x+1)}{\left(x-x^{1 / 2}\right)}\right)^{10}, x>1$ is:

  • [JEE MAIN 2025]