The coefficient of $x^9$ in the expansion of $(1+x)\left(1+x^2\right)\left(1+x^3\right) \ldots . .\left(1+x^{100}\right)$ is

  • [IIT 2015]
  • A

    $6$

  • B

    $7$

  • C

    $8$

  • D

    $9$

Similar Questions

Find $a, b$ and $n$ in the expansion of $(a+b)^{n}$ if the first three terms of the expansion are $729,7290$ and $30375,$ respectively.

If for positive integers $r > 1,n > 2$ the coefficient of the ${(3r)^{th}}$ and ${(r + 2)^{th}}$ powers of $x$ in the expansion of ${(1 + x)^{2n}}$ are equal, then

  • [AIEEE 2002]

If $\alpha$ and $\beta$ be the coefficients of $x^{4}$ and $x^{2}$ respectively in the expansion of

$(\mathrm{x}+\sqrt{\mathrm{x}^{2}-1})^{6}+(\mathrm{x}-\sqrt{\mathrm{x}^{2}-1})^{6}$, then 

  • [JEE MAIN 2020]

If the coefficients of ${5^{th}}$, ${6^{th}}$and ${7^{th}}$ terms in the expansion of ${(1 + x)^n}$be in $A.P.$, then $n =$

If the coefficient of $x$ in the expansion of ${\left( {{x^2} + \frac{k}{x}} \right)^5}$ is $270$, then $k =$