The phase difference corresponding to path difference of $x$ is
$\frac {2\pi x}{\lambda }$
$\frac {2\pi \lambda }{x}$
$\frac {\pi x }{\lambda }$
$\frac {\pi \lambda }{x}$
A wave travelling along the $x-$ axis is described by the equation $y\ (x, t )\ =\ 0.005\ cos\ (\alpha x - \beta t )$ . If the wavelength and the time period of the wave in $0.08\ m$ and $2.0\ s$ respectively then $\alpha $ and $\beta $ in appropriate units are
The phase difference between two points separated by $0.8 m$ in a wave of frequency $120 Hz$ is ${90^o}$. Then the velocity of wave will be ............ $\mathrm{m/s}$
Two monoatomic ideal gases $1$ and $2$ of molecular masses $M_1$ and $M_2$ respectively are enclosed in separate containers kept a the same temperature. The ratio of the speed of sound in gas $1$ to that in gas $2$ is
A car $P$ approaching a crossing at a speed of $10\, m/s$ sounds a horn of frequency $700\, Hz$ when $40\, m$ in front of the crossing. Speed of sound in air is $340\, m/s$. Another car $Q$ is at rest on a road which is perpendicular to the road on which car $P$ is reaching the crossing (see figure). The driver of car $Q$ hears the sound of the horn of car $P$ when he is $30\, m$ in front of the crossing. The apparent frequency heard by the driver of car $Q$ is .... $Hz$
Dependence of disturbances due to two waves on time is shown in the figure. The ratio of their intensities $I_1 / I_2$ will be