The phase difference between two points separated by $0.8 m$ in a wave of frequency $120 Hz$ is ${90^o}$. Then the velocity of wave will be ............ $\mathrm{m/s}$

  • A

    $192$

  • B

    $360 $

  • C

    $710 $

  • D

    $384$

Similar Questions

A wave $y = a\,\sin \,\left( {\omega t - kx} \right)$ on a string meets with another wave producing a node at $x = 0$. Then the equation of the unknown wave is

The apparent frequency of a sound wave as heard by an observer is $10\%$ more than the actual frequency. If the velocity of sound in air is $330\, m/sec$, then 
$(i)$ The source may be moving towards the observer with a velocity of $30\,ms^{-1}$
$(ii)$ The source may be moving towards the observer with a velocity of $33\,ms^{-1}$
$(iii)$ The observer may be moving towards the source with a velocity of $30\,ms^{-1}$
$(iv)$ The observer may be moving towards the source with a velocity of $33\,ms^{-1}$

Three sound waves of equal amplitudes have frequencies $(f-1 ), f, (f+ 1)$. They superpose to give beats. The number of beats produced per second will be:

Two pipes are each $50\,cm$ in length. One of them is closed at one end while the other is  both ends. The speed of sound in air is $340\,ms^{-1}.$ The frequency at which both the pipes can resonate is

A train whistling at constant frequency is moving towards a station at a constant speed $V$. The train goes past a stationary observer on the station. The frequency $n'$ of the sound as heard by the observer is plotted as a function of time $t (Fig.)$ . Identify the expected curve