$\alpha ,\;\beta $ are the roots of the equation ${x^2} - 3x + a = 0$ and $\gamma ,\;\delta $ are the roots of the equation ${x^2} - 12x + b = 0$. If $\alpha ,\;\beta ,\;\gamma ,\;\delta $ form an increasing $G.P.$, then $(a,\;b) = $
$(3, 12)$
$(12, 3)$
$(2, 32)$
$(4, 16)$
The sum of first $20$ terms of the sequence $0.7,0.77,0.777, . . . $ is
If $a,\;b,\;c$ are in $G.P.$, then
$x = 1 + a + {a^2} + ....\infty \,(a < 1)$ $y = 1 + b + {b^2}.......\infty \,(b < 1)$ Then the value of $1 + ab + {a^2}{b^2} + ..........\infty $ is
The value of $\overline {0.037} $ where, $\overline {.037} $ stands for the number $0.037037037........$ is
The sum of the first five terms of the series $3 + 4\frac{1}{2} + 6\frac{3}{4} + ......$ will be