The number of solutions of the system of equations $2x + y - z = 7,\,\,x - 3y + 2z = 1,\,x + 4y - 3z = 5$ is
$3$
$2$
$1$
$0$
How many values of $k $ , systeam of linear equations $\left( {k + 1} \right)x + 8y = 4k\;,\;kx + \left( {k + 3} \right)y$$ = 3k - 1$ has no solutions.
$\left| {\,\begin{array}{*{20}{c}}{{{\sin }^2}x}&{{{\cos }^2}x}&1\\{{{\cos }^2}x}&{{{\sin }^2}x}&1\\{ - 10}&{12}&2\end{array}\,} \right| = $
If $A, B, C$ are the angles of triangle then the value of determinant $\left| {\begin{array}{*{20}{c}}
{\sin \,2A}&{\sin \,C}&{\sin \,B} \\
{\sin \,C}&{\sin \,2B}&{\sin A} \\
{\sin \,B}&{\sin \,A}&{\sin \,2C}
\end{array}} \right|$ is
If the system of equations $x +y + z = 6$ ; $x + 2y + 3z= 10$ ; $x + 2y + \lambda z = 0$ has a unique solution, then $\lambda $ is not equal to
If $ 5$ is one root of the equation $\left| {\,\begin{array}{*{20}{c}}x&3&7\\2&x&{ - 2}\\7&8&x\end{array}\,} \right| = 0$, then other two roots of the equation are