The number of solutions of the equation $\left(\frac{9}{x}-\frac{9}{\sqrt{x}}+2\right)\left(\frac{2}{x}-\frac{7}{\sqrt{x}}+3\right)=0$ is :

  • [JEE MAIN 2025]
  • A
    $2$
  • B
    $4$
  • C
    $1$
  • D
    $3$

Similar Questions

If the inequality $kx^2 -2x + k \geq  0$ holds good for atleast one real $'x'$ , then the complete set of values of $'k'$ is

The number of real values of $x$ for which the equality $\left| {\,3{x^2} + 12x + 6\,} \right| = 5x + 16$ holds good is

If $x$ is real, then the maximum and minimum values of the expression $\frac{{{x^2} - 3x + 4}}{{{x^2} + 3x + 4}}$ will be

  • [IIT 1984]

The set of values of $x$ which satisfy $5x + 2 < 3x + 8$ and $\frac{{x + 2}}{{x - 1}} < 4,$ is

Number of integers satisfying inequality, $\sqrt {{{\log }_3}(x) - 1}  + \frac{{\frac{1}{2}{{\log }_3}\,{x^3}}}{{{{\log }_3}\,\frac{1}{3}}} + 2 > 0$ is