समीकरण निकाय $x + y - z = 0$, $3x - y - z = 0$, $x - 3y + z = 0$ के हलों की संख्या होगी
$0$
$1$
$2$
अनन्त
रैखिक समीकरण निकाय $\mathrm{ax}+\mathrm{y}+\mathrm{z}=1$, $x+a y+z=1, x+y+a z=\beta$ के लिए निम्न में से कौनसा कथन सही नहीं है ?
सारणिक $\left| {\,\begin{array}{*{20}{c}}{4 + {x^2}}&{ - 6}&{ - 2}\\{ - 6}&{9 + {x^2}}&3\\{ - 2}&3&{1 + {x^2}}\end{array}\,} \right|$ निम्न के द्वारा विभाज्य नहीं है
माना रैखिक समीकरण निकाय $4 x +\lambda y +2 z =0$ ; $2 x - y + z =0$ ; $\mu x +2 y +3 z =0, \lambda, \mu \in R$ का एक अतुच्छ हल है। तो निम्न में से कौन सा सत्य है ?
यदि रैखीक समीकरण निकाय
$2 x+y+z=5$
$x-y+z=3$
$x+y+a z=b$ का कोई हल नहीं है, तो
सारणिकों का प्रयोग करके $A (1,3)$ और $B (0,0)$ को जोड़ने वाली रेखा का समीकरण ज्ञात कीजिए और $k$ का मान ज्ञात कीजिए यदि एक बिंदु $D (k, 0)$ इस प्रकार है कि $\Delta\, ABD$ का क्षेत्रफल $3$ वर्ग इकाई है।